Duration: 3 hours

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

DESIGN OF TRANSMISSION ELEMENTS (MECHANICAL ENGINEERING)

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries

14 marks and have an internal choice of Questions.							
2. All parts of Question must be answered in one place.							
BL – Blooms Level CO – Course Outcome							
	* Use of Approved Design Data book is permitted *						
			BL	CO	Max. Marks		
UNIT-I							
1	a)	What do you understand by torsional rigidity?	L1	CO1	4 M		
	b)	A propeller shaft is required to transmit 45 kW	L3	CO4	10 M		
		power at 500 rpm. It is a hollow shaft having					
		inside diameter 0.6 times of outside diameter. It					
		is made of plain carbon steel and the permissible					
		shear stress is 84 kN/mm ² . Calculate the inside					
		and outside diameters of the shaft.					
		OR					
2	2 It is required to design a bushed pin type flexible L4 CO4						
	coupling to connect the output shaft of an electric						
	motor to the shaft of a centrifugal pump. The motor						
	delivers 20 kW power at 720 rpm. The starting						
	torque of the motor can be assumed to be 150% of						
	the rated torque. Design the coupling and specify						
	the	dimensions of its components.					
	UNIT-II						
3	a)	What are the advantages of V-belts over flat-	L1	CO1	4 M		
		belts ?					

Max. Marks: 70

	b)	An open-belt drive is required transmit 10 kW	L3	CO2	10 M		
		of power from a motor running at 600 rpm.					
		Diameter of the driving pulley is 250 mm. The					
		speed of the driven pulley is 220 rpm. The belt					
		is 12 mm thick and has a mass density of					
		0.001 g/mm^3 . Safe stress in the belt is not to					
		exceed 2.5 N/mm ² . The two shafts are 1.25 m					
		apart. The coefficient of friction is 0.25.					
		Determine the width of the belt.					
OR							
4	a)	Explain the applications of chine drives.	L2	CO1	2 M		
	b)	Design a roller chain drive to transmit power	L4	CO2	12 M		
		from a 15kW motor to a reciprocating pump.					
		The speed of motor is 570 rpm and pump is					
		running at 200 rpm. Determine the number of					
		teeth on each sprocket, pitch and length of					
		chain. Use the data given in the table.					
		Power Rating of Simple Roller Chain					
		Pinion Power kW Speed 0.00 101 100					
		(rpm) 06B 08A 08B 10A 10B 12A 12B 16A 16B					
		500 1.09 2.24 2.72 4.34 5.07 7.69 8.53 16.99 20.57 700 1.48 2.95 3.66 5.91 6.71 10.73 11.63 23.26 27.73					
		UNIT-III					
5	a)	A ball bearing is subjected to a radial force of	L3	CO3	7 M		
		2500 N and an axial force of 1000 N. The					
		dynamic load carrying capacity of the bearing is					
		7350 N. The values of X and Y factors are 0.56					
		and 1.6 respectively. The shaft is rotating at 720					
		rpm. Calculate the life of the bearing.					
	b)	A system involves four identical ball bearings,	L3	CO3	7 M		
		each subjected to a radial load of 2500 N. The					
		reliability of the system, i.e., one out of four					
		bearings failing during the lifetime of five					

		million revolutions, is 82%. Determine the				
		dynamic load carrying capacity of the bearing,				
		so as to select it from the manufacturer's				
		catalogue based on 90% reliability.				
		OR				
6						
0	<i>a)</i>	rolling-contact bearings over sliding contact		COI	-+ IVI	
		bearings.				
	b)	Following data is given for a 360°	12	CO3	10 M	
	0)	hydrodynamic bearing:		COS	10 101	
		journal diameter = 100 mm, bearing length =				
		100 mm, radial load = 50 kN, journal speed =				
		1440 rpm, radial clearance = 0.12 mm, viscosity of lubricant = 16 cP				
		Calculate:				
		(i) minimum film thickness;(ii) coefficient of friction; and				
		(iii) power lost in friction.				
		UNIT-IV				
7			ТЭ	CO1	4 14	
7	a)	L. L	L2	COI	4 M	
	1 \	working principle of anyone friction clutch	1.0	002	10 14	
	b)	A single plate clutch (both sides effective) is	L3	CO3	10 M	
		required to transmit 48kW at 1900 rpm. The				
		outer diameter of the plate is limited to 350 mm				
		and intensity of pressure between the plates is 1.75 ± 0.11				
		not to exceed 75 kN/m ² . Assuming uniform				
		wear and a coefficient of friction 0.28, find the				
		inner diameter of the plate.				
OR						
8	a)	Describe with the help of neat sketches the	L2	CO1	4 M	
		working principle of anyone Brake.				

	b)	A band and block brake has 10 blocks and each	L3	CO3	10 M			
		block subtends an angle of 15° at the centre of						
		the wheel. The two ends of the band are fixed to						
		pins on the opposite sides of the brake fulcrum						
		at distances of 40 mm and 200 mm from it.						
		Determine the maximum force required to be						
		applied on the lever at a distance of 300 mm						
		from the fulcrum to absorb 250 kW of power at						
		280 rpm. The effective diameter of the drum is						
		840 mm. Take $\mu = 0.35$.						
	UNIT-V							
9	a)	What are the advantages of Helical gears?	L2	CO1	4 M			
	b)	A pair of parallel helical gears consists of an 18	L3	CO4	10 M			
		teeth pinion meshing with a 45 teeth gear.						
		7.5 kW power at 2000 rpm is supplied to the						
		pinion through its shaft. The normal module is						
		6 mm, while the normal pressure angle is 20° .						
		The helix angle is 23° . Determine the tangential,						
		radial and axial components of the resultant						
		tooth force between the meshing teeth.						
OR								
10	Th	e pitch circle diameters of the pinion and gear are	L4	CO4	14 M			
	100 mm and 300 mm respectively. The pinion is							
	made of plain carbon steel 40C8 ($S_{ut} = 600 \text{ N/mm}^2$)							
	while the gear is made of grey cast iron FG 300							
	$(S_{ut} = 300 \text{ N/mm}^2)$. The pinion receives 5 kW power							
	at 500 rpm through its shaft. The service factor and							
	factor of safety can be taken as 1.5 each. The face							
	width of the gear can be taken as ten times that of							
	the module. Assume that the velocity factor							
	accounts for the dynamic load. Calculate							
		module; and (ii) the number of teeth on the						
	pir	nion and gear.						